This error occurs when a Firestore query contains more than 30 OR conditions (disjunctions), exceeding Firestore's query complexity limit. To fix it, you need to restructure your query to use fewer disjunctions or implement alternative filtering approaches.
Firestore has query complexity limits to ensure performance and scalability. One key limitation is the maximum number of disjunctions (OR conditions) allowed in a single query, which is 30. This limit applies to queries that use the `in` operator with arrays, multiple `where` clauses with OR logic, or complex compound queries. When you exceed this limit, Firestore rejects the query to prevent performance degradation and maintain service reliability for all users.
Examine your Firestore query to identify where disjunctions are being created. Look for:
// Problematic query with too many OR conditions
const query = db.collection('products')
.where('category', 'in', [/* array with >30 items */]);
// OR multiple where clauses
const query = db.collection('users')
.where('status', '==', 'active')
.where('age', '>', 18)
.where('country', 'in', [/* large array */]);Count the total number of disjunctions in your query.
If you're using the in operator with more than 30 items, split the array into chunks and combine results client-side:
// Split array into chunks of 30 or fewer
function chunkArray(array, chunkSize) {
const chunks = [];
for (let i = 0; i < array.length; i += chunkSize) {
chunks.push(array.slice(i, i + chunkSize));
}
return chunks;
}
// Execute multiple queries
async function queryWithLargeInArray(items) {
const chunks = chunkArray(items, 30);
const promises = chunks.map(chunk =>
db.collection('products')
.where('id', 'in', chunk)
.get()
);
const results = await Promise.all(promises);
// Combine results
return results.flatMap(snapshot => snapshot.docs);
}For queries with many OR conditions, consider:
1. Use composite queries: Combine conditions where possible
2. Pre-filter data: Store pre-computed flags or categories
3. Use array-contains: Instead of multiple ORs, use array fields
// Instead of many OR conditions:
// .where('status', '==', 'pending')
// .where('status', '==', 'processing')
// .where('status', '==', 'shipped')
// Use array-contains with a statuses field
await db.collection('orders')
.where('statuses', 'array-contains', 'active')
.get();
// Or store active statuses in a separate array fieldFor very large result sets, implement pagination to reduce query complexity:
// Paginate through results
async function getPaginatedResults(filters, pageSize = 20) {
let query = db.collection('items');
// Apply filters in batches
for (const filter of filters.slice(0, 30)) {
query = query.where(filter.field, filter.operator, filter.value);
}
const snapshot = await query.limit(pageSize).get();
return snapshot.docs;
}
// Process remaining filters in subsequent pages if neededFor cross-collection queries, use collection group queries with careful filtering:
// Collection group query with limited disjunctions
const query = db.collectionGroup('items')
.where('category', 'in', [/* max 30 items */])
.where('active', '==', true);
// Combine with client-side filtering for additional criteria
const snapshot = await query.get();
const filtered = snapshot.docs.filter(doc =>
// Additional client-side filtering
doc.data().price > 100 && doc.data().inStock
);If you consistently hit disjunction limits, reconsider your data model:
1. Denormalize data: Store computed values to reduce query complexity
2. Use subcollections: Break data into logical groupings
3. Implement materialized views: Pre-compute common query results
4. Use Cloud Functions: Run complex queries server-side where limits are different
Example of denormalization:
// Instead of querying across many fields
// Store a tags array for efficient querying
{
title: "Product",
tags: ["electronics", "sale", "featured", "in-stock"],
// ... other fields
}
// Query becomes simpler
await db.collection('products')
.where('tags', 'array-contains-any', [/* up to 10 items */])
.get();Firestore's 30-disjunction limit is a hard constraint designed to maintain query performance. Note that array-contains-any also has a limit of 10 items. For extremely complex querying needs, consider:
1. Cloud Functions: Run complex queries in a server environment with different constraints
2. BigQuery export: Use Firestore's BigQuery export for analytical queries
3. Composite indexes: Carefully design composite indexes for common query patterns
4. Query planning: Use the Firestore query planner tool to analyze query complexity
Remember that client-side merging of multiple query results has trade-offs: increased latency, more document reads (cost), and potential consistency issues if data changes between queries.
messaging/UNSPECIFIED_ERROR: No additional information available
How to fix "messaging/UNSPECIFIED_ERROR: No additional information available" in Firebase Cloud Messaging
App Check: reCAPTCHA Score Too Low
App Check reCAPTCHA Score Too Low
storage/invalid-url: Invalid URL format for Cloud Storage reference
How to fix invalid URL format in Firebase Cloud Storage
auth/missing-uid: User ID identifier required
How to fix "auth/missing-uid: User ID identifier required" in Firebase
auth/invalid-argument: Invalid parameter passed to method
How to fix "auth/invalid-argument: Invalid parameter passed to method" in Firebase